Discussion 2 Worksheet

Tangents, Area, Arclength
Date: 8/30/2021
MATH 53 Multivariable Calculus

1 Computing Tangents

Compute the slopes of the following curves at a point in time t. Find the points where the tangents are vertical and horizontal and compute the second derivative $d^{2} y / d x^{2}$ at the horizontal points.
(a) $x=\cos t, y=\sin t$
(c) $x=e^{t}-1, y=\sin t$
(b) $x=t^{2}-1 y=t^{3}-t$
(d) $x=e^{t}-t, y=\cos t$

2 Computing Areas

Using the appropriate formula, find the area in question.
(a) Use the parametric equations of an ellipse, $x=a \cos \theta, y=b \sin \theta, 0 \leq \theta \leq 2 \pi$, to find the area that it encloses.
(b) Find the area enclosed by the x-axis and the curve $x=t^{3}+1, y=2 t-t^{2}$.
(c) Find the area of the region enclosed by the astroid $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$.

3 Computing Arc Lengths

Using the appropriate formula, find the length of the curve.
(a) $x=1+3 t^{2}, y=4+2 t^{3}, 0 \leq t \leq 1$.
(b) $x=e^{t}-t, y=4 e^{t / 2}, 0 \leq t \leq 2$.
(c) $x=e^{t} \cos t, y=e^{t} \sin t, 0 \leq t \leq \pi$.

4 True/False

(a) T F The parametric representation of a curve is unique.
(b) T F When integrating, we can replace $\sin ^{2} \theta$ with $(1-\cos 2 \theta) / 2$.
(c) T F A (parametric) curve can only be described in either Cartesian coordinates $x=f(t), y=$ $g(t)$ or in polar coordinates $r=f(\theta)$, but not both.
(d) $\mathrm{T} \mathrm{F} \sin (2 t)=2 \sin t \cos t$

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

